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The analysis is given of the forces and pressures acting on various parts of the vibrating and pulse 
plate extraction column. The relationships are presented for both the instantaneous values of the 
forces acting on the plate and the bottom of the column, and for the instantaneous and average 
power input. The results of the analysis are interpreted from the point of view of measurement 
of the dynamic effect and power input by two methods: The measurement of pressure pulsations 
at the bottom of the column, and the measurement of forces on the shaft carrying the plates. 
The vibrating and pulse columns are compared from the dynamic point of view. 

The counter-current extractors utilizing periodic motion of the liquid with respect 
to the packing or plates for intensification of mass transfer have been applied ever 
more extensively recently. The relative periodic motion can be induced either by pul­
sation of the liquid in the column, while the plates (or packing) are kept fixed, or by 
vibration of the plates (or packing). The former type is termed pulse extractors and 
the latter vibrating extractors. The vibrating and pulse plate extractors considered 
in this paper are the perforated-plate columns. For the design of these apparatuses 
it is essential that the information about the acting forces as well as the required 
power input be available. These data are important not only for proper choice of the 
motor and the design of individual parts but also for understanding of the processes 
taking place in the extractor. 

Several papersl - 4 dealing with the dynamic effects in pulse extractors have been published. 
A majority of them is concerned about the particular type of pulsation by air. In such a case the 
resultant displacement of liquid in the column is given by combined action of the volume and 
surface forces including periodic variations of pressure of the air cushion causing the motion 
of liquid. The theoretical and experimental case of pulsation of a liquid in a column by means 
of a piston performing harmonic motion was investigated in the paper of Jealous and Johnson!. 
Certain simplifying assumptions are typical for all papers cited and bring about discrepancies 
between the experimental and calculated values of pressure in the column: 1. The friction resistan­
ce in the openings of the plate can be expressed from the orifice equation with constant coefficient 
of resistance over the whole cycle; 2. only the acceleration in free cross-section of the colutr.n and 
the pulsator is considered in the calculation of inertia forces, whereas that of the liquid within 
the openings and their vicinity is neglected. 
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Earlier papers investigated only the pressure exerted on the bottom, eventually 
the pressure on a certain part of the wall, but not the pressure acting on the plates. 
In this paper attention is paid to the forces acting on the plates not only because 
of their importance for design considerations but also because this paper deals with 
both the pulse and vibrating plate columns. While the power input of a pulse column 
is given by the product of the force acting on the piston and its velocity (and hence 
by the pressure near the bottom of the column or the pulsator arm), the power 
input of a vibrating column is determined by the forces exerted by the plate on the 
liquid and by the speed of motion of the plates. 

THE OVER-ALL MOMENTUM BALANCE 

The relation between the instantaneous force acting on a set of plates and the in­
stantaneous pressure near the bottom of an extractor can be obtained from the 
momentum balance. Let us consider the case when a liquid phase is passing through 
the column and its flow is generally unsteady. The plates, mounted on a common 
shaft, move too and their motion is also unsteady. The macroscopic momentum 
balance in a closed system containing a liquid and a solid phase can be written 
as follows: 

dP!dt = d(PL + Ps)!dt = "[fAi + FML + FMS ' 
i 

(1) 

The check system considered is sketched in Fig. 1. It consists of the liquid filling that 
part of.the column where the plates are situated, the plates themselves and the shaft. 
Let the flow of the liquid through the surface 1 and 2 be a piston-type flow. In view 
of incompressibility and constant cross-section of the column the instantaneous 
velocities of liquid on surfaces 1 and 2 are equal. Consequently, the system can be 
defined as one whose boundaries 1 and 2 move with the velocity wL(t) and therefore 
closed. Thus the forces exerted by liquid on the plates are inner ones and as such 
do not participate in the balance. The accumulation terms on the left hand side of 
Eq. (1) can be expressed by means of the mass of liquid, mL, and that of the set of 
plates and the shaft, ms 

and 

PL = f u dmL = mLwL and Ps = msws 
mL 

(2) 

(3) 

The surface forces acting on the system can be decomposed into their tangential 
and normal components 

(4) 
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FR is the force exerted by the vibrator on the plates. This force is also transferred 
on the liquid unless there is friction between the plates and the wall and if the friction 
in the bearings guiding the shaft is negligible. Since the velocities WL encountered 
in extractors are small and the viscosity of continuous phase is also small, the first 
term to be integrated can be neglected. The net force on the wall of the column 
is zero owing to the axial symmetry of the system. This is true even though we are 
dealing with a turbulent system and instantaneous values as long as the scale of tur­
bulence is much smaller than the length of the column. Thus only the forces acting 
on surfaces 1 and 2 remain. Since in accord with our assumption the flow across 
these surface is a piston-type flow we can write 

IlAi = (Pl - P2) A + FR , (5) 
i 

where the vector A is parallel to the x axis. Finally, the volume forces are 

(6) 

As all terms in Eq.(1) are vectors parallel to the axis of the column, the relation can 
be rewritten into the scalar form . With respect to Eq.(i) and (6) 

In a particular case of a vibrating column WL = const., 
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FIG. 1 

Check System for Momentum Balance 
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In a particular case of a pulse column Ws = 0, 

(9) 

Eqs (8) and (9) enable the forces acting on the plates to be calculated from me­
asurements of the pressure, Pz, near the bottom of the column which is easier. The 
force acting on the plaies of vibrating column is 

(10) 

and for a pulse column 

(10a) 

In a pulse column F Rp represents a force acting on the joint of the plates regardles 
of construction details. Th<:! group {hies represents the buoyancy force which, as an 
inner force, does not appear in the over-all balance. The instantaneous power input 
supplied to the liquid in a vibrating extractor is obtained as a product of forces 
exerted on liquid by the plates and the instantaneous velocity of the plates. Thus 
with respect to Eq. (8) 

(11) 

The instantaneous power input supplied to the liquid in a pulse extractor is a product 
of the force near the bottom and the velocity of liquid: 

(12) 

The velocity and acceleration are considered continuous in time. A comparison 
of instantaneous power inputs in vibrating and pulse extractors can be made at the 
same relative velocity with respect to the plates Ws = - WL • Since the pressures pz 
are different in both columns they have to be substituted with the aid ofEqs (8)-(10) 
by forces acting on the plates, which are equal at the same relative velocity of liquid 
with respect to the plates. 

The difference between both types follows from the periodic motion of the whole 
liquid content of the pulse column. The work is done against the outer pressure and 
the changes in accumulation of the kinetic and potential energy occur. The average 
values of the power input for the whole cycle, however, are equal in both columns 
as follows from integration of Eq. (13): 
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f: -WL dt = - f dO" = 0 ; 

(14) 

To compare the strain of the driving mechanism, one has to compare the power 
input on the shaft of a vibrating extractor, NRv> and on the piston of a pulsator, N Rp 

ml stands for the mass of liquid in the pulsator arm and Al is its cross-section. 
The friction in the pulsator arm is neglected; the arm is horizontal. By analogous 
arrangements as those used in deriving Eq. (13) we get 

N RP - N Rv = - WdPlAc + (mL + ms)g - [mL + I11Ll(AcIA l) - msJ (dwL/dt)}. 
(17) 

Although the average values of the power input are again equal, it is the maximum 
values, not the average ones, that are important for dimensioning of the motor unless 
a flywheel is used. Considering that I11L is usuaIJy several times greater than I11S' 

Eq. (17) shows clearly the increase of the instantaneous power input and the strain 
of the driving mechanism of a pulse column in comparison with that of the vibrating 
plate column with increasing volume of the column, and velocity and acceleration 
of pulsation. Increasing pressure on the liquid level has also an unfavourable effect 
on the function of the pulsator. From comparison of a vibrating plate and pulse 
extractors at the same relative velocity of liquid with respect to the plates, and hence 
at the same F p , it further folJows: 

(18) 

All preceding relations hold regardless of the form of functions ws(t) and WL(t). 
A stipulation for Eq. (14) is that these functions be periodic. For Eqs (13), (14), (17) 
and (18) it is further assumed that Ws = - wL , i.e. the average velocity of liquid 
wL = (llr) g WL dt is neglected. Let us denote 
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For comparison of the vibrating and pulse plate columns one can then put in Eqs (13) 
and (14) more generally - ws(t) + WL = w~(t) + WL • Thus these equations remain 
valid, except that WL is replaced by w~. More accurately, w~ should appear in Eq. (16) 
as well as in Eq. (17), which then remains valid . All quantities F R, F p, pz and N can 
be decomposed into the average value and the pulsation component. While for the 
velocity one can arrive at WL by superimposing the pulsation w~ on the mean velo­
city WL (as we are dealing with velocities averaged over the cross-section), the compo­
nents of the forces , pressures and power inputs P, Pz, N are not generally identical 
with the values of these .quantities at the stationary flow through the column at WL. 

The reason is that. these quantities, as will be shown below, depend on the v'elocity 
field in the column and hence both their average and pulsation components are 
functions of the average and pulsation component of velocity. 

ENERGY BALANCE 

To obtain a relation for the i~stantaneous values of Pz, or FR, we set up first the energy 
balance for a liquid system containing one immobile perforated plate with uniformly 
spaced openings of circular cross-section. The plate itself has a finite thickness. 
No interference is assumed between the flows through the individual openings. Hence, 
for the check volume it suffices to take a tube around one opening coaxial with its 
axis and such that all liquid passing through the opening remains within the tube 
(Fig. 2). For the time being let us assume an ideal liquid and a potential flow. The 
equation ' of motion is: 

(19) 

For the streamline passing through the center of the opening we get by integration 
between Xl and X 2 : 

(20) 

The integral on the right hand side represents the effect of unsteadiness of the flow. 
Eq. (20) can be extended to real fluids by introducing the losses, 112. Further we 
assume that the velocity profile in cross-sections 1 and 2is flat and, accordingly, 
U l = Uz = WL 

(21) 

where n = p - (!gx . 
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FRICTION LOSSES 

The derivation of the term for friction losses is based on the assumption that at 
moderate accelerations the losses under unsteady flow would not differ appreciably 
from those under the steady flow. The total losses can be divided into the losses 
at the inlet of the opening,jli' within the opening,jiO' and at the exit,j02: 

i12 = iii + iiO + i02 . (22) 

The inlet losses, iii' are important only for small values of plate free cross-section, 
e, and large values of Re = dwL/ve. Then we have approximateiyS 

iii = 0·5(1 - e) . (23) 

The losses in the opening must be expressed for two cases: The laminar and the 
turbulent flow. The problem is to assess the losses in a short tube of circular cross­
section with sharp leading and trailing edges. This case has been examined in the 
preceding paper6

• For the laminar flow, Schiller's model7 has been verified which 
attributes the losses to the changes of momentum of the potential flow within the 
core at gradual formation of the laminar boundary layer on the walls. The resulting 
relations are as follows 

iiO = (cp2 - 1) (wLlwd/e2), 

cp = cp(sld Re) = uoe/wL, 

where U o is the velocity on the axis at the outlet. 

sid Re = (1/240) {S8(CP - 1) - 66 In cP - 17 .J(2) (3CP _ cp2)0.S -

(24) 

(24a) 

- 48 .J(2) [(3 - cp)/cpJo. s + 130 - 63 .J(2) arcsin (CP/3)0 .s + 

+ 63 .J(2) arcsin (1(3)0.s - (481.J(2)) arcsin [(2CP)/3 - IJ -
- (481.J(2) arcsin (1/3)) . (24b) 

For the losses under the turbulent flow in the opening one can use Blasius' relation 
correlating the losses in a straight tube with the correction on contraction of the jet 

(25) 

where f3 is the coefficient of contraction . 
A relation for the losses by sudden expansion can be derived in a familiar way 

from the momentum and energy balances in section 0-2. Under the laminar regime 
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in the opening one has to consider the velocity profile in the exit cross-section O. 
The correction coefficients for the momentum, C(M' and energy, C(E: are defined as 

Then: (27) 

The total losses according to Eqs (22) through (27) for the laminar flow in the opening 
are then 

and for the turbulent flow in the opening 

112 = [0'5(1 - e) + e2 - 2e + 1 + (1 - P)2/P2 + 0'316s/(d Re)1 /4]. 

. (wLl wd/2e2) . 

UNSTEADY FLOW CONTRIBUTION 

(28) 

(29) 

The velocity field in the neighborhood of the plate j is too complex. Thus a realistic 
expression of the integral on the right hand side of Eq. (21) is not easy. We shall 
therefore introduce an empirical quantity, the equivalent thickness of the plate, 
SE' This quantity is defined as the height of the liquid column moving at the velocity 
wL/e and causing an increase of the inertia term, when compared with its value in an 
empty column, equivalent to the effect due to the presence of the plate. 

[(1 - e) SE/e] (dwL/dt) = J:~(a(u - WL)/at) dx, 

J:~(au/at) dx = [X2 - Xl + (1 - e) sE/e] (dwL/dt) . 

RESULTS AND DISCUSSION 

(30) 

At sufficient spacing of the plates one can assume that their effects are additive. 
Thus for instantaneous pressure P2p near the bottom of an n-plate pulse column 
We get from Eqs (21) and (30) 

where for expressing 112 we have Eq. (28) or (29). 
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The instantaneous force acting on the shaft can be easily calculated from these 
relationships, Eq. (8) and considering further Eq. (18) and the condition - Ws + 
+ WL = WL. 

From Eqs (31) and (18) and with respect to n1 L /Ac = eLand dWL/dt = - dws/dt, 
one obtains 

Note that - Ws + WL = WL has to be substituted in expression for 112. On substitution 
in Eq. (8) we obtain finally 

FRv = - ms(1 - (h/Qs) g + Ems + QLA Cn(1 - e) SE/eJ (dws/dt) - nQL Ac!12· 

(32) 

The correction for the buoyancy in the first term on the right hand side of Eq. (32) 
appeared as a difference of mL and QLAcL. 

The relations (31) and (32) contain an unknown empirical quantity, SE, which may be a func­
tion of the amplitude and the frequency (a, f), the form of oscillations, the diameter of the plate 
openings (d), the plate free cross-section (e), the thickness of the plate (s), the viscosity and density 
of liquid phase (v, (lL) and the average velocity wL . On considering only harmonic oscillations 
one can assume following dependence between dimensionless groups 

(33) 

the form of which is yet to be found experimentally. The bar oyer SE designates the average value 
over the whole cycle. The results of experiments which are now conducted suggest that the shapes 
of the experimental and theoretical dependences FR(t) and P2(t) are in good agreement. This 
indicates not only that the average values of sE can be used for characterizing the inertia forces, 
but also that the friction losses at a steady flow can be used for description of an unsteady situa­
tion within the given range of variables. The measured values of FR and P2 also satisfy Eq. (7). 

This analysis concerns a single phase flow. The presence of another phase requires 
corrections of individual terms. Nevertheless, it may be expected that owing to small 
differences in densities the single phase calculation provides estimates of forces and 
power input sufficiently accurate for practice. In the part of this paper where the 
friction losses were formulated it was assumed that the diameter of the openings 
was close to the thickness of the plate. For certain types of columns (e.g.: Karr8

) 

with large openings it may be expected that a relationship for losses in an orifice 
will be more suitable. 
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LIST OF SYMBOLS 

a 
A 

Ac 
d 

f 

amplitude of pulse 
vector surface 
column cross-section 
diameter of plate opening 
losses in energy equation, frequency 
of pulses in Eq. (33) 

F force 
g acceleration due to gravity 
L length of .column 
m mass 
n number of plates 
n = dA/idAi unit vector of surface 
N power input 
p static pressure 
p momentum 

radius of plate openings 
thickness of plate 

sE equivalent thickness of plate 
t time 
T duration of cycle 

velocity on the axis of opening 
u(y) veloc i+" profile on exit from opening 
u local instantaneous velocity of liquid 
wL instantaneous superficial velocity 

REFERENCES 

Prochazka, Hafez 

Ws instantaneous velocity of plates 
ocM, ocE defined by Eq, (26) 
P coefficient of contraction 
t5 unit tensor 
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